NPU,全称是Neural network Processing Unit,即神经网络处理器。
与它相近的还有好几个XPU,包括:
• CPU全称:Central Processing Unit, 即中央处理器;
• GPU全称:Graphics Processing Unit, 即图像处理器;
• TPU全称:Tensor Processing Unit, 即张量处理器;
• DPU全称:Deep learning Processing Unit, 即深度学习处理器;
• BPU全称:Brain Processing Unit, 即大脑处理器。
AI芯片火热,到底NPU是什么?
它是神经网络处理器,在电路层模拟人类神经元和突触,并且用深度学习指令集直接处理大规模的神经元和突触,一条指令完成一组神经元的处理。相比于CPU中采取的存储与计算相分离的冯诺伊曼结构,NPU通过突触权重实现存储和计算一体化,从而大大提高了运行效率。
NPU的典型代表有国内的寒武纪芯片和IBM的TrueNorth,中星微电子的“星光智能一号”虽说对外号称是NPU,但其实只是DSP,仅支持网络正向运算,无法支持神经网络训练。而且从存储结构上看,该款芯片是基于传统的片上存储,而非神经网络芯片的便携式存储。
前段时间,华为推出麒麟970,号称全球第一枚集成NPU神经网络单元的移动芯片。简而言之,麒麟970有了NPU单元之后,至少在拍照和图像处理上,比之前单纯依赖CPU和GPU要快得多。而对于竞争对手,麒麟970最直接的就是保持高效率,并且更加的省电。
就目前AI芯片之争来看,由于传统CPU、GPU和DSP本质上并非以硬件神经元和突触为基本处理单元,相对于NPU在深度学习方面天生会有一定劣势,在芯片集成度和制造工艺水平相当的情况下,其表现必然逊色于NPU。
打个比方,就像无论是再好的轿车(CPU/GPU)要去拉货,也不可能和真正大马力、高负载的货车(NPU)相比。
来自科技行者对一看到A、B、C、D...XPU就拍脑袋的DAWN老师