将 LLM 集成至已有业务,通过引入 LLM 增强现有应用的能力,接入 Dify 的 RESTful API 从而实现 Prompt 与业务代码的解耦,在 Dify 的管理界面是跟踪数据、成本和用量,持续改进应用效果。
它结合了后端即服务 和 LLMOps 的概念,使开发人员能够快速构建生产级生成式 AI 应用。通过集成构建 LLM 应用所需的关键技术栈,包括对数百个模型的支持、直观的提示词编排界面、高质量的检索增强生成 引擎以及灵活的 Agent 框架,同时提供了一组易于使用的界面和 API,Dify 为开发人员节省了大量时间避免重复造轮子,让他们可以专注于创新和业务需求。
今天作者要分享的是如何在DiFy平台上创建一个Agent。Agent是利用大语言模型的推理能力,自主地对复杂的人类任务进行目标规划、任务拆分、工具调用和过程迭代,最终在没有人类干预的情况下自主完成任务。
从去年年初开始用ChatGPT,并且探索了各种AI提效项目,自己也逐渐从小白到了用AI还凑合的人,在生财里带了3期ChatGPT提效航海、在公司里把AI各个业务的赋能都摸索了一遍、又和各种AI圈友讨论交流,这个月决定动笔来总结一下过去的实践思考,于是便整理了这篇文章,希望它能够对你用好AI有一定的帮助~