撰文 | Fengwen, BBuf本文主要介绍 One-YOLOv5 使用的数据集格式以及如何制作一个可以获得更好训练效果的数据集。本节教程的数据集标准部分翻译了 Ultralytics/YOLOv5 wiki 中对数据集相关的描述(https://github.
他们公布的结果表明,YOLOv5 的表现要优于谷歌开源的目标检测框架 EfficientDet,尽管 YOLOv5 的开发者没有明确地将其与 YOLOv4 进行比较,但他们却声称 YOLOv5 能在 Tesla P100 上实现 140 FPS 的快速检测;
可视化界面的部分在window.py文件中,是通过pyqt5完成的界面设计,在启动界面前,你需要将模型替换成你训练好的模型,替换的位置在window.py的第60行,修改成你的模型地址即可,如果你有GPU的话,可以将device设置为0,表示使用第0行GPU,这样可以加快模型的识别速度嗷。