目标识别方法一直是近年来计算机视觉领域的研究热点。目前有两种用于目标检测的先进深度学习方法:基于R-CNN的目标检测算法,该算法首先生成候选区域,然后执行分类或回归,以及You Only Look Once和Single Shot MultiBox Detector算法,仅使用一个 CNN 执行分类或回归。
Joseph Redmon的这篇提出YOLO的论文You Only Look Once: Unified, Real-Time Object Detection也发表在了CVPR 2016上,并获得了CVPR 2016的最佳人气奖。
本文针对风电叶片轻微裂纹难于检测的问题,提出一种基于改进YOLOv5s模型的检测方法:通过在主干网络部分使用空洞空间金字塔池化(ASPP)代替空间金字塔池化(SPP)以适应不同大小和比例的目标,将注意力机制模块(squeeze and excitation,SE)插入主干网络中以
我们先整体来看下 YOLOv7的输入输出结构,首先对输入的图片 resize 为 640x640 大小,输入到 backbone 网络中,然后经 head 层网络输出三层不同 size 大小的 feature map,并输出预测结果,这里以 coco 为例子,输出为 80 个类别,然后每个输出 即坐标位置和是否存在物体的置信度,3 是指的 anchor 数量,因此每一层的输出为 x 3 = 255再乘上 feature map 的大小就是最终的输出了。