伴随大语言模型(LLM,Large Language Model)的涌现,人们发现生成式人工智能在非常多领域具有重要意义,如图像生成,书写文稿,信息搜索等。随着 LLM 场景的多样化,大家希望 LLM 能在垂直领域发挥其强大的功能。
本文为笔者学习LangChain时对官方文档以及一系列资料进行一些总结~覆盖对Langchain的核心六大模块的理解与核心使用方法,全文篇幅较长,共计50000+字,可先码住辅助用于学习Langchain。一、Langchain是什么?
由于目前比较火的chatGPT是预训练模型,而训练一个大模型是需要较长时间,这就导致了它所学习的知识不会是最新的,最新的chatGPT-4o只能基于2023年6月之前的数据进行回答,距离目前已经快一年的时间,如果想让GPT基于近一年的时间回复问题,就需要RAG技术了。
前言前面给大家介绍了一些在线构建聊天机器人和私有化离线部署LLM模型建立知识库的方案,如Quivr结合Supabase、PrivateGPT、ChatGLM 6B等,基本上这些解决方案的背后整体的核心都离不开一个关键技术,就是LangChain。