Spark拥有Hadoop MapReduce所具有的优点,但不同于Hadoop MapReduce的是,Hadoop每次经过Job执行的中间结果都存储到HDFS等磁盘上,而Spark的Job中间输出结果可以保存在内存中,而不再需要读写HDFS。
APIKafkaUtils.createDirectStream[String,String, StringDecoder, StringDecoder]代码演示import kafka.serializer.StringDecoderimport org.apache.spar
Apache Hadoop是一个成熟的开发框架,其连接着庞大的生态系统,并且得到了Cloudera、Hortonwork、Yahoo这些卓越机构的支持与贡献,并且为各个组织提供了许多工具来管理不同大小规则的数据。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。
SQL and DataFrames :Spark SQL 是 Spark 用来操作结构化数据的组件。这里强哥也要提一句,官网有这么一个说明非常重要:Note that, before Spark 2.0, the main programming interface of Spark was the Resilient Distributed Dataset . After Spark 2.0, RDDs are replaced by Dataset, which is strongly-typed like an RDD, but with richer optimizations under the hood. The RDD interface is still supported, and you can get a more detailed reference at the RDD programming guide. However, we highly recommend you to switch to use Dataset, which has better performance than RDD. See the SQL programming guide to get more information about Dataset.