这里将其总结如下,比如在数据清洗时使用到numpy和pandas包,数据可视化时使用matplotlib库,matplotlib库上手容易,更高级的学习seaborn库,seaborn库是改良matplotlib库的图表画法,如果创建有交互性的图表,可以使用Pyecharts库。
Python是进行数据分析的一种很不错的语言,主要是因为以数据为中心的#python#库非常适合。 Pandas是其中的一种,使导入和分析数据更加容易。 在本文中,我使用了来分析斯坦福网站的公共数据集中的Country Data.csv文件中的数据。
数据处理常用到NumPy、SciPy和Pandas,数据分析常用到Pandas和Scikit-Learn,数据可视化常用到Matplotlib,而对大规模数据进行分布式挖掘时则可以使用Pyspark来调用Spark集群的资源。