Levi G, Hassner T. Age and gender classification using convolutional neural networks//Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2015: 34-42. ↩︎。
Python中实现人脸识别功能有多种方法,依赖于python胶水语言的特性,我们通过调用包可以快速准确的达成这一目的,本文给大家分享使用Python实现简单的人脸识别功能的操作步骤,感兴趣的朋友一起看看吧!
Benchmarks Timings at 240p: - Face locations: 0.0819s - Face landmarks: 0.0029s - Encode face : 0.4879s - End-to-end: 0.5978s Timings at 480p: - Face locations: 0.3257s - Face landmarks: 0.0028s - Encode face : 0.4959s - End-to-end: 0.8203s Timings at 720p: - Face locations: 0.7046s - Face landmarks: 0.0028s - Encode face : 0.4993s - End-to-end: 1.1888s Timings at 1080p: - Face locations: 1.5179s - Face landmarks: 0.0030s - Encode face : 0.4838s - End-to-end: 1.9404s。
先来看下产品效果:本系统纯本地部署,不依赖任何网络资源,断网可用,实现的功能如下: 语音识别:将说话内容精准识别成文字大模型回复:将文字交给llama3做解析和回复语音转化:将llama3 的文字转化成语音播放出来动画播放:将语音结合动画,让动画人物做成相应的动作人脸识别:通过摄