每经记者:岳楚鹏 每经编辑:兰素英2月10日,清华大学KVCache.AI团队联合趋境科技发布的KTransformers开源项目迎来重大更新,成功打破大模型推理算力门槛。此前,拥有671B参数的MoE架构大模型DeepSeek-R1在推理时困难重重。
1. 背景近几年,随着“大模型”概念的提出,深度学习模型越来越大,如何训练这些大模型成为一个亟待解决的工程问题。最初的视觉模型只有几百兆的参数量,而现在的语言模型中,动则百亿,千亿的参数量,甚至万亿的大模型也是见怪不怪。如此巨大的参数量将会消耗巨大的存储空间。
通过这种优化方法,在最新的 Llama2 的 7B 和 13B 模型中,如果用一块 AMD Radeon RX 7900 XTX 速度可以达到英伟达 RTX 4090 的 80%,或是 3090Ti 的 94%。
不过,如果我们可以用A卡代替N卡,甚至不需要GPU就可以训练大模型,一切又会发生怎样的变化呢?通过这种优化方法,在最新Llama2的7B和13B模型中,用一块AMD Radeon RX 7900 XTX,速度已可达到英伟达RTX 4090的80%,或是3090Ti的94%。
对于FP16精度的模型,在搭载了13代Intel Core i9和单张RTX 4090的高端PC上,PowerInfer平均实现了7.23倍的速度提升,其中在Falcon 40B上实现了高达11.69倍的速度提升。