尽管时间序列数据可以存储在 MySQL 或 PostgreSQL 数据库中,但这并不是特别有效。我们学习了如何使用 InfluxDB 的 Python 客户端库构建一个简单的应用程序来执行 CRUD 操作,但是如果想仔细查看任何内容,可以在此处找到包含整个源代码的 repo。
举一个简单的例子,在相同的测试环境下,以传统的关系型数据库 MySQL 和时序数据库 TDengine 为例,做一下 benchmark 的对比测试 :分别使用 MySQL 自带的 benchmark 工具 mysqlslap 和 TDengine 自带的 benchmark 工具taosbenchmark,设置 16 个线程,写入单表 10 万条记录,表结构为 1 个 timestamp 类型,2 个 int 类型,2 个字符串类型,测试结果如下:MySQL——
摘要:目前,物联网、工业互联网、车联网等智能互联技术在各个行业场景下快速普及应用,导致联网传感器、智能设备数量急剧增加,随之而来的海量时序监控数据存储、处理问题,也为时序数据库高效压缩、存储数据能力提出了更高的要求。
从2016年到现在我一直重心在开源建设上面,包括ApacheFlink/ApacheBeam/ApacheIoTDB,在这个过程中也得到了开源的一些肯定,目前是BeamCommitter,ApacheFlink和ApacheIoTDB的PMC,也是Apache Member,目前全球华人大概有30+的ApacheMember,当然,随着开源的越来越热,国内每年参与开源建设的同学也在逐渐的在增加。